domingo, 24 de março de 2019


Uma reação química pode ser reversível, se é possível que ocorra em ambos os sentidos:
 B + C
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
O irreversível só pode ocorrer em um sentido:
 B + C
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Reversibilidade refere-se à propriedade de um sistema físico de retornar ao estado inicial A quando revertida a causa que o levou de A ao estado final B distinto de A. É aplicado com duas conotações, uma estrita, outra mais ampla.
Irreversibilidade refere-se à propriedade de um sistema de sofrer alterações que as leve de um estado inicial A para um estado final B, contudo de forma que torne-se impossível o regresso ao estado inicial, mesmo cambiadas as causas da transição inicial. Nestes termos, processos que exibam simetria temporal são reversíveis, processos que impliquem assimetria temporal são irreversíveis.

Em sentido estrito, reversibilidade aplica-se a processos que não acarretam aumento de entropia. Em sistemas termodinâmicos isolados reversibilidade refere-se a capacidade de um sistema termodinâmico macroscópico ou microscópico de experimentar alterações físicas ou químicas sem que estas alterações impliquem um aumento da entropia do sistema, sendo assim sempre possível voltar-se ao estado anterior à transformação uma vez revertidas as condições que implicaram tal transformação. Em acordo com a segunda lei da termodinâmica, caso haja aumento de entropia quando da ocorrência de processos em sistemas isolados, os estados iniciais - de menor entropia - ficam doravante permanentemente inacessíveis ao sistema isolado. Somente estados caracterizados por um mesmo valor de entropia são acessíveis de forma reversível. Os estados caracterizados por maiores valores de entropia são acessíveis, contudo de forma irreversível, e os com menores valores de entropia ficam permanentemente inacessíveis uma vez mantidas as fronteiras completamente restritivas delimitando o sistema.
Em sentido lato, "reversibilidade" aplica-se a sistemas com fronteiras permeáveis - fechados e mesmo abertos - nos quais os estados A e B diferem de tal forma que o estado B retenha em si todas as condições necessária para que o estado A mostre-se novamente acessível uma vez invertido o processo que afrouxou as restrições que impediam a transformação de A para B - esta geralmente espontânea. Não é necessário neste caso que o estado B seja isentrópico a A, podendo B ser caracterizado por uma entropia maior do que A. Contudo a transformação e os estados devem ter consigo associados a propriedade de que, ao impor-se o retorno a A, o processo de retorno intrinsecamente implique a transferência do excesso de entropia - produzido na transição inicial de A para B - para a vizinhança - geralmente mediante calor entre o sistema e a vizinhança. Assim, o processo que leva à transição entre A-B é reversível às custas de um constante aumento da entropia da vizinhança, visto que a entropia não renegada à vizinhança produzida no processo direto (A --> B) é automaticamente renegada à vizinhança no processo reverso (B --> A).
Exemplo clássico da aplicação da reversibilidade em sentido lato associa-se ao processo de carga e descarga das pilhas recarregáveis (baterias) quando contrastado ao processo irreversível atrelado às pilhas comuns não recarregáveis. Ao passo que nas pilhas comuns o estado final B - o da pilha descarregada - não implica as condições necessárias para o retorno ao estado inicial (pilha carregada) mediante a mera inversão do sentido da corrente elétrica que ocorrera durante a descarga, nas pilhas recarregáveis o estado final B implica todas as condições para que, uma vez revertida a corrente, o estado A seja novamente acessível, mesmo que calor seja liberado no processo de carga - assim como de descarga - para o ambiente, ou seja, mesmo às custas de um constante aumento da entropia na vizinhança. Nas pilhas não recarregáveis, o processo também irreversível associado à inversão da corrente citada leva o sistema não ao regresso ao estado A, mas sim a um terceiro estado C muitas vezes indesejável (vazamento da bateria, explosões, etc.).
Um exemplo típico de reversibilidade em sentido lato é também o que se dá nos materiais elásticos que podem variar seu estado de deformação e tensão sob a ação de certas forças e voltar a seu estado inicial quando as forças deixam de atuar sobre o material.
Frente aos resultados empíricos, a definição de reversibilidade associar-se-ia a rigor à definição em sentido estrito apresentada - sendo esta entretanto utópica - visto que na prática não ocorrem processo completamente reversíveis - que concordem de forma exata com a definição estrita, embora processo muito próximos a estes possam ser verificados. Na prática verificam-se apenas os processos que concordam com a definição em sentido lato de "reversibilidade". Fala-se por tal em transformações, processos quase-estáticos, ou ainda processos quase-reversíveis.
É importante ressaltar que nem todos os processos físicos são reversíveis. O cozimento de um ovo, que caracteriza-se como um processo físico - e não químico como muitos pensam - é, certamente, um processo irreversível. O mesmo vale, de forma mais evidente, para os processos químicos.

Reversibilidade e irreversibilidade nas reações químicas[editar | editar código-fonte]

Uma reação química pode ser reversível, se é possível que ocorra em ambos os sentidos:
 B + C
O irreversível só pode ocorrer em um sentido:
 B + C

Exemplos[editar | editar código-fonte]

Seguem-se alguns exemplos tanto de processos reversíveis quanto irreversíveis.

Exemplos de reversibilidade[editar | editar código-fonte]

  • Em recipiente fechado, fundir o gelo e posteriormente voltar a congelá-lo.
  • Em ambiente fechado, evaporar a água e voltar a condensá-la.
  • Estirar, por compressão ou estiramento, uma mola numa pequena variação de comprimento (logo recupera-se a forma original da mola).
  • Deformar, por compressão ou estiramento, um objeto de borracha ou outro elastômero numa pequena variação de comprimento e durante tempo curto (logo recupera-se a forma original do objeto)

Exemplos de irreversibilidade[editar | editar código-fonte]

O que se segue é uma lista de eventos espontâneos que contribuem para a irreversibilidade dos processos.
expansão Joule é um exemplo da termodinâmica clássica que mostra como é possível trabalhar o consequente aumento da entropia. Isto ocorre quando um volume de gás é mantido em uma parte de um recipiente isolado termicamente (através de uma pequena partição), com o outro lado do recipiente sendo evacuado, a partição entre as duas partes do recipiente é então aberta e o gás preenche todo o recipiente. A energia interna do gás continua a ser a mesma, enquanto que o volume aumenta. O estado original não pode ser recuperado por simplesmente comprimir o gás do seu volume original, uma vez que a energia interna será aumentada por essa compressão. O estado original só pode ser recuperado por arrefecimento do sistema causando assim, de forma irreversível, o aquecimento do ambiente.













x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




Em termodinâmica, o efeito Joule-Thomson ou efeito Joule-Kelvin ou efeito Kelvin-Joule descreve a variação da temperatura de um gás ou líquido quando ele é forçado a passar através de uma válvula ou tampão poroso, enquanto mantido isolado, de modo que nenhum calor seja trocado com o ambiente.[1][2][3] Este procedimento é chamado de processo de estrangulamento ou válvula Joule-Thomson.[4] À temperatura ambiente, todos os gases, exceto hidrogêniohélio e neônio, resfriam-se sob a expansão do experimento de Joule-Thomson.[5][6]
O efeito tem esse nome em homenagem a James Prescott Joule e William Thomson, o 1º Barão Kelvin, que descobriram-no em 1852, na sequência de trabalhos anteriores de Joule sobre a expansão de Joule, em que um gás sofre expansão livre no vácuo.

expansão adiabática (sem troca de calor) de um gás pode ser realizada de várias maneiras. A mudança de temperatura experimentada pelo gás durante a expansão depende não só das pressões inicial e final, mas também da maneira como a expansão é realizada.
  • Se o processo de expansão é reversível, o que significa que o gás está em equilíbrio termodinâmico em todos os instantes, ela é chamada expansão isentrópica. Neste cenário, o gás realiza trabalho positivo durante a expansão, e sua temperatura diminui.
  • Em uma expansão livre, por outro lado, o gás não realiza trabalho e não absorve calor, assim a energia interna é conservada. Expandido livremente, a temperatura de um gás ideal deveria permanecer constante, mas a temperatura de um gás real pode aumentar ou diminuir, dependendo da temperatura e pressão iniciais.
  • O método de expansão discutido neste artigo, no qual um gás ou líquido a uma pressão P1 flui para uma região à baixa pressão P2 através de uma válvula ou tampão poroso, sob condições estáveis e sem variação na energia cinética, é chamada de experimento de Joule-Thomson . Durante este processo, a entalpia permanece inalterada (veja a demostração abaixo).
O processo de estrangulamento ocorre ao longo de uma curva à entalpia constante, no sentido em que a pressão diminui, o que significa que o processo ocorre da esquerda para a direita em um diagrama T-P. À medida que avançamos ao longo de uma curva de entalpia constante, a altas pressões, a temperatura aumenta, até a temperatura de inversão. Então, como o líquido continua a se expandir, a temperatura cai. Se fizermos isso para várias curvas de entalpia constante e juntarmos os pontos de inversão, uma curva chamada de curva de inversão é obtida. Esta curva intercepta o eixo T em alguma temperatura, chamada de temperatura de inversão máxima. Para o hidrogênio, a temperatura é -68°. Na refrigeração por compressão de vapor, é preciso regular a pressão do gás e resfriá-lo ao mesmo tempo. Isto representa uma barreira para as substâncias cuja temperatura de inversão máxima está bem abaixo da temperatura ambiente. Assim, o hidrogênio precisa ser resfriado abaixo de sua temperatura de inversão se o resfriamento é obtido através do estrangulamento.

O mecanismo físico[editar | editar código-fonte]

Uma vez que o gás se expande, a distância média entre as moléculas aumenta. Devido às forças atrativas intermoleculares (ver força de van der Waals), a expansão produz um aumento na energia potencial do gás. Se nenhum trabalho externo é extraído no processo e nenhum calor é transferido, a energia total do gás permanece a mesma por causa da conservação da energia. O aumento da energia potencial, portanto, implica numa diminuição da energia cinética e portanto uma diminuição de temperatura.
Um segundo mecanismo tem o efeito oposto. Durante as colisões com as moléculas do gás, a energia cinética é temporariamente convertida em energia potencial. Como a distância média intermolecular aumenta, há uma queda no número de colisões por unidade de tempo, o que provoca uma diminuição da energia potencial média. Mais uma vez, a energia total é conservada, então isto leva a um aumento na energia cinética (temperatura). Abaixo da temperatura de inversão de Joule-Thomson, o efeito anterior (o trabalho interno realizado contra as forças atrativas intermoleculares) predomina, e a expansão livre provoca uma diminuição na temperatura. Acima da temperatura de inversão, as moléculas de gás se movem mais rapidamente e assim colidem com mais freqüência, e o último efeito (colisões reduzidas produzindo diminuição na energia potencial média) predomina: a expansão de Joule-Thomson provoca um aumento da temperatura.

O coeficiente de Joule-Thomson[editar | editar código-fonte]

Coeficientes de Joule-Thomson para vários gases à pressão atmosférica.
A taxa de variação da temperatura T em relação à pressão P em um processo de Joule-Thomson (isto é, à entalpia constante H) é o coeficiente de Joule-Thomson . Este coeficiente pode ser expresso em termos do volume V do gás, da sua capacidade térmica à pressão constante  e de seu coeficiente de expansão térmica  como:[1][3][7]
Veja a dedução do coeficiente de Joule-Thomson (Kelvin) abaixo, para a demonstração desta relação. O valor de  é normalmente expresso em °C/bar (SI units: K/Pa) e depende do tipo de gás, da temperatura e da pressão do gás antes da expansão. A sua dependência com a pressão normalmente é apenas uma pequena percentagem para pressões até 100 bar.
Todos os gases reais têm um ponto de inversão no qual o valor de  muda de sinal. A temperatura ndeste ponto, a temperatura de inversão de Joule-Thomson, depende da pressão do gás antes da expansão.
Numa expansão a pressão diminui, assim o sinal de  é negativo por definição. Com isso em mente, a tabela a seguir mostra quando o efeito Joule-Thomson resfria ou aquece um gás real:
Se a temperatura do gás estáentão  édesde que  éassim  deve serlogo o gás
abaixo da temperatura de inversãopositivosempre negativonegativoé resfriado
acima da temperatura de inversãonegativosempre negativopositivoé aquecido
Hélio e hidrogênio são dois gases cujas temperaturas de inversão de Joule-Thomson a uma pressão de 1 atm são muito baixas (por exemplo, cerca de 51 K (-222 °C) para o hélio). Assim, o hélio e o hidrogênio aquecem-se quando expandem-se à entalpia constante à temperatura ambiente típica. Por outro lado, o nitrogênio e o oxigênio, os dois gases mais abundantes na atmosfera, têm temperaturas inversão de 621 K (348 °C) e 764 K (491 °C), respectivamente: estes gases podem ser resfriados à temperatura ambiente pelo efeito Joule-Thomson.[1]
Para um gás ideal,  é sempre igual a zero: gases ideais nem se aquecem nem se resfriam ao serem expandidos à entalpia constante.












princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].